The Impact of Biofilms upon Surfaces Relevant to an Intermediate Level Radioactive Waste Geological Disposal Facility under Simulated Near-Field Conditions

نویسندگان

  • Christopher J. Charles
  • Simon P. Rout
  • Andrew P. Laws
  • Brian R. Jackson
  • Sally A. Boxall
  • Paul N. Humphreys
چکیده

The ability of biofilms to form on a range of materials (cementious backfill (Nirex Reference Vault Backfill (NRVB)), graphite, and stainless steel) relevant to potential UK intermediate level radioactive waste (ILW) disposal concepts was investigated by exposing these surfaces to alkaliphilic flocs generated by mature biofilm communities. Flocs are aggregates of biofilm material that are able to act as a transport vector for the propagation of biofilms. In systems where biofilm formation was observed there was also a decrease in the sorption of isosaccharinic acids to the NRVB. The biofilms were composed of cells, extracellular DNA (eDNA), proteins, and lipids with a smaller polysaccharide fraction, which was biased towards mannopyranosyl linked carbohydrates. The same trend was seen with the graphite and stainless steel surfaces at these pH values, but in this case the biofilms associated with the stainless steel surfaces had a distinct eDNA basal layer that anchored the biofilm to the surface. At pH 13, no structured biofilm was observed, rather all the surfaces accumulated an indistinct organic layer composed of biofilm materials. This was particularly the case for the stainless steel coupons which accumulated relatively large quantities of eDNA. The results demonstrate that there is the potential for biofilm formation in an ILW-GDF provided an initiation source for the microbial biofilm is present. They also suggest that even when conditions are too harsh for biofilm formation, exposed surfaces may accumulate organic material such as eDNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Search of a Nuclear Waste Disposal Site

The choice of a site for high and intermediate level nuclear waste product material disposal in Jordan requires careful consideration of hydrology, hydrogeology, geological materials, seismicity, climate and other geological factors. The purpose of this paper is to explore how these factors in Jordan may affect the ultimate decision on where to site such a facility. Taking these factors into co...

متن کامل

Radioactive waste disposal: Global experience and challenges

Since the world's first disposal of radioactive waste in Oak Ridge, Tennessee, in 1944, considerable experience has been acquired in the field. The first disposal site — intended for "actively contaminated broken glassware or materials not sufficiently clean to be used in other work" — was a simple trench filled with unconditioned waste located on the Oak Ridge site. Similar approaches were ado...

متن کامل

Use of in-vitro experimental results to model in-situ experiments: bio-denitrification under geological disposal conditions

Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository...

متن کامل

Environmental Issues in the Geological Disposal of Carbon Dioxide and Radioactive Waste –

A comparative assessment of the post-closure environmental issues for the geological disposal of carbon dioxide (CO2) and radioactive waste is made in this chapter. Several criteria are used: the characteristics of radioactive waste and CO2; their potential environmental impacts; an assessment of the hazards arising from radioactive waste and CO2; and monitoring of their environmental impacts. ...

متن کامل

Effect of thermo-coupled processes on the behaviour of a clay barrier submitted to heating and hydration.

The storage of high level radioactive waste is still an unresolved problem of the nuclear industry, being geological disposal the most favoured option and, naturally, the one requiring the strongest geo-mechanical input. Most conceptual designs for the deep geological disposal of nuclear waste envisage placing the canisters containing the waste in horizontal drifts or vertical boreholes. The em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017